معرفی مدل ‏های تحول چشم ‏انداز و کاربردهای آنها با تأکید بر مدل هیدرودینامیکی CAESAR-Lisflood

نوع مقاله : مقالات مروری

نویسندگان

1 گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان، کاشان، ایران

2 گروه آبخیزداری، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

مدل‏های تحول چشم‌انداز، مدل‏های فرآیندی بر مبنای فیزیک هستند که سعی دارند فرآیندهای فعالی را که چشم‏اندازها را به‏طور قابل توجهی شکل می‏دهند، تقلید کرده و به‏صورت یک مدل درآورند. اکثر این مدل‏ها، غالباً فرآیندهای هیدرولوژیکی، رودخانه‏ای‏ و دامنه‏ای را شبیه‏سازی می‏کنند؛ با این حال، فرآیندهای یخچالی، بادی و تکتونیک را نیز به‏خوبی دربرمی‏گیرند. مدل‏های تحول چشم‌انداز، معمولاً در تمام مقیاس‏های مکانی (10 تا 1000 کیلومترمربع) به‏صورت پیوسته و واقعه‏ای اجرا می‏گردند. این مدل‏ها، با دربرگرفتن دامنه گسترده‏ای از فرآیندها، امکان مقایسه جامع بین نتایج شبیه‏ سازی پاسخ حوضه آبخیز به تغییرات محیطی را فراهم می‏کنند. مدل‏های تحول چشم‌انداز انواع مختلفی دارند که یکی از مهمترین آنها مدل CAESAR-Lisflood است. مدل CAESAR-Lisflood، نسخه فعلی CAESAR، که مؤلفه جریان سطحی آن (مبتنی بر قوانین فیزیکی با راه حل عددی ساده‏سازی شده معادلات جریان‏های کم عمق) از مدل هیدرولیکی LISFLOOD-FP اقتباس شده است. علاوه بر این، مدل CL تحولات ژئومورفولوژیکی حوضه رودخانه و دشت سیلابی را در شرایط جریان ناپایدار بصورت دوبعدی شبیه‏ سازی می‏کند.

کلیدواژه‌ها

موضوعات


امینی مصطفی؛ قهرودی تالی منیژه؛ سرور هوشنگ؛ 1395، سیر تکوینی نظریه های ژئومورفولوژی، نشریه جغرافیا و برنامه‏ریزی محیطی. 4: 115-93.
جعفری غلامحسین جعفری؛ بختیاری فاطمه؛ 1396، آستانههای ژئومورفیک حوضه آبی قزل‏اوزن، نشریه جغرافیا و مخاطرات محیطی. 6: 152-127.
رامشت محمد حسین؛ احمدی عبدالمجید؛ آراء هایده؛ 1389، حوضه‏های آبخیز از دیدگاه سیستمی (مطالعه موردی: حوضه آبخیز رود گاماسیاب)،  نشریه جغرافیا و برنامه‏ریزی منطقه‏ای. 1: 145-127.  
شایان سیاوش؛ شریفی، محمد؛ 1385، مدل به عنوان تکنیکی در ژئومورفولوژی، نشریه تحقیقات جغرافیایی. 1: 120-102.
علیجانی، بهلول ، 1374، آب و هوای ایران، چاپ اول، تهران : انتشارات دانشگاه پیام نور.
معتمد، احمد ؛ مقیمی، ابراهیم؛ 1378، کاربرد ژئومورفولوژی در برنامه‏ریزی، تهران: انتشارات سمت.
 
Ahnert F. (1976). Brief description of a comprehensive three dimensional process-response model of landform development. Zeitschrift für Geomorphologie, 25: 29 – 49.
Bates, P. D., & De Roo, A. (2000). A simple raster-based model for flood inundation simulation. Journal of hydrology, 236 (1-2), 54-77.
Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of hydrology, 387(1-2), 33-45.
Beven KJ, Kirkby MJ. (1979). A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d ’ appel variable de l ’ hydrologie du bassin versant. Hydrological Sciences Bulletin, 24: 43 – 69. DOI: 10.1080/02626667909491834.
Braun, J., & Sambridge, M. (1997). Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization. Basin Research, 9(1), 27-52.
Brewer, P., & Lewin, J. (1998). Planform cyclicity in an unstable reach: complex fluvial response to environmental change. Earth Surface Processes and Landforms, 23(11), 989-1008.
Brown, R. .A.,   & Pasternack, G.B. (2019). How to build a digital river. Earth-Science Reviews. 194 ,283–305.
Bastola, S., Dialynas, Y. G., Bras, R. L., Noto, L. V., & Istanbulluoglu, E. (2018). The role of vegetation on gully erosion stabilization at a severely degraded landscape: A case study from Calhoun Experimental Critical Zone Observatory. Geomorphology, 308, 25-39.
Barkwith, A., Hurst, M. D., Jackson, C. R., Wang, L., Ellis, M. A., & Coulthard, T. J. (2015). Simulating the influences of groundwater on regional geomorphology using a distributed, dynamic, landscape evolution modelling platform. Environmental Modelling & Software, 74, 1-20.
Coulthard, T., Kirkby, M., & Macklin, M. (1996). A cellular automaton landscape evolution model. In Proceedings of the first international conference on GeoComputation (Vol. 1, pp. 248-81). School of Geography, University of Leeds.
Coulthard, T. J., &  Macklin, M. (2001). How sensitive are river systems to climate and  land‐use changes? A model‐based evaluation. Journal of Quaternary Science, 16(4), 347-351.
Coulthard, T. J., Kirkby, M., & Macklin, M. (2000). Modelling geomorphic response to    environmental change in an upland catchment. Hydrological processes, 14(11‐12), 2031-2045.
Coulthard, T. J., Macklin, M., & Kirkby, M. (2002). A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms, 27(3), 269-288.
Coulthard, T. J., Lewin, J., & Macklin, M. (2005). Modelling differential catchment response to environmental change. Geomorphology, 69(1-4), 222-241.
Coulthard, T. J., & Van De Wiel, M. J. (2006). A cellular model of river meandering. Earth Surface Processes and Landforms, 31(1), 123-132.
Coulthard, T.J., Van De Wiel, M.J., (2007). Quantifying fluvial non-linearity and finding self organized criticality? Insights from simulations of river basin evolution. Geomorphology, 91, 216–235.
Coulthard, T. J., & Van De Wiel, M. J. (2012a). Modelling river history and evolution. Phil. Trans. R. Soc. A, 370(1966), 2123-2142.
Coulthard, T. J., Hancock, G. R., & Lowry, J. B. (2012b). Modelling soil erosion with a   downscaled landscape evolution model. Earth Surface Processes and Landforms, 37(10), 1046-1055.
Coulthard, T. J., Neal, J. C., Bates, P. D., Ramirez, J., Almeida, G. A., & Hancock, G. R. (2013a). Integrating the LISFLOOD‐FP 2D hydrodynamic model with the CAESAR model: implications for modelling landscape evolution. Earth Surface Processes and Landforms, 38(15), 1897-1906.
Coulthard, T. J., & Van De Wiel, M. J. (2013b). 9.34 Numerical Modeling in Fluvial Geomorphology. In J. Schroder & E. Wohl (Eds.), Treatise on Geomorphology, (pp. 694-710): Elsevier.
Coulthard, T.J.; van de Wiel, M.J. (2017). Modelling long term basin scale sediment connectivity, driven by spatial land use changes. Geomorphology. 277, 265–281.
Coulthard, T.,   Skinner, C. J. (2016).   The sensitivity of landscape evolution models to spatial and temporal rainfall resolution. Earth Surf. Dynam., 4, 757–771.
Einstein HA. (1950). The bed-load function for sediment transportation in open channel flows. In Technical Bulletin No. 1026, USDA Soil Conservation Service. US Department of Agriculture.
Evans, K. G. (2000). Methods for assessing mine site rehabilitation design for erosion impact. Soil Research, 38, 231-248, (2). doi:https://doi.org/10.1071/SR99036.
de Almeida GAM, Bates P, Freer JE, Souvignet M. 2012. Improving the stabilityof a simple formulation of the shallow water equations for 2-D flood modeling. Water Resources Research 48: 1 – 14. DOI: 10.1029/2011WR011570
Desjardins, E, Van De Wiel, M & Rousseau, Y. (2018). 'Predicting, explaining and exploring with computer simulations in fluvial geomorphology' Earth-Science Reviews, vol (In-Press), pp:1533-1544
Gioia, D., Lazzari, M. (2019). Testing the Prediction Ability of LEM-Derived Sedimentary Budget in an Upland Catchment of the Southern Apennines, Italy: A Source to Sink Approach. Water, 11, 911; doi:10.3390/w11050911. http://dx.doi.org/10.3390/w11050911.
Hancock, G. R., Duque, J. M., & Willgoose, G. R. (2019). Geomorphic design and modelling at catchment scale for best mine rehabilitation–The Drayton mine example (New South Wales, Australia). Environmental modelling & software, 114, 140-151.
Hoober, D.,  Svoray, T.,  CohenEarth, S. (2017).  Using a landform evolution model to study ephemeral gullying in agricultural fields: the effects of rainfall patterns on ephemeral gully dynamicsEarth Surf. Process. Landforms 42, 1213–1226.
Howard, A. D. (1994). A detachment‐limited model of drainage basin evolution. Water Resources Research, 30(7), 2261-2285.
Huang X, Niemann JD. (2006). An evaluation of the geomorphically effective event for fluvial processes over long periods. Journal of Geophysical Research, 111 (F3): F03015. DOI: 10.1029/2006JF000477
Izumi N, Parker G. (1995). Inception of channelization and drainage basin formation: upstream-driven theory. Journal of Fluid Mechanics, 283: 341 – 363. DOI: 10.1017/S0022112095002357
Kirkby MJ. (1987). Modelling some influences of soil erosion, landslides and valley gradient on drainage density and hollow development. Catena Supplement, 10: 1 – 11.
Knighton, AD, 1998. Fluvial Forms and Processes: A New Perspective, Arnold,        London., 383 p., ill., tabl, pl., 15, 5 x 23, 5 cm. ISBN 0 340 66313 8. Géographie    physique et Quaternaire, 53(3), 413-414.
Loewenherz ,DS. (1991). Stability and the Initiation of Channelized Surface Drainage: A Reassessment of the Short Wavelength Limit. Journal of Geophysical Research, 96 (B5): 8453 – 8464. DOI:10.1029/90JB02704
Lowry, J.B.C., Narayan, M., Hancock, G.R., Evans , K.G. (2018). Understanding post-mining landforms: Utilising pre-mine geomorphology to improve rehabilitation outcomes. Geomor, 11.027.https://doi.org/10.1016/j.geomorph.
Lague D, Hovius N, Davy P. (2005). Discharge, discharge variability, andthe bedrock channel profile. Journal of Geophysical Research, 110 (F4): 1 – 17. DOI: 10.1029/2004JF000259
Macklin, M. G., Rumsby, B. T., & Heap, T. (1992). Flood alluviation and entrenchment: Holocene valley-floor development and transformation in the British uplands. Geological Society of America Bulletin, 104(6), 631-643.
Murray AB, Paola C. (1997). Properties of a cellular braided stream model. Earth Surface Processes and Landforms, 22: 1001 – 1025. DOI: 10.1002/(SICI)1096-9837.
Molnar P, Anderson RS, Kier G, Rose J. (2006). Relationships amongprobability distributions of stream discharges in floods, climate, bedload transport, and river incision. Journal of Geophysical Research, 111 (F2): 1 – 10. DOI: 10.1029/2005JF000310
Neal, J., Schumann, G., & Bates, P. (2012). A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resources Research, 48(11).
Nicholas, A. P., & Quine, T. A. (2007). Modeling alluvial landform change in the absence of external environmental forcing. Geology, 35(6), 527-530.
O'Loughlin, F. E., Neal, J., Schumann, G. J. P., Beighley, E., & Bates, P. D. (2020). A LISFLOOD-FP hydraulic model of the middle reach of the Congo. Journal of Hydrology, 580, 124203.
Parker G, Izumi N. (2000). Purely erosional cyclic and solitary steps created by flow over a cohesive bed. Journal of Fluid Mechanics, 419: 203 – 238. DOI: 10.1017/S0022112000001403
Peeters, I., Rommens, T., Verstraeten, G., Govers, G., Van Rompaey, A., Poesen, J., & Van Oost, K. (2006). Reconstructing ancient topography through erosion modelling. Geomorphology, 78(3-4), 250-264.
Pasculli A, Audisio C. (2015). Cellular Automata Modelling of Fluvial Evolution: Real and Parametric Numerical Results Comparison Along River Pellice (NW Italy). Environmental Modeling & Assessment: 1–17.
Poeppl R.E., Coulthard T., Keesstra S.D. & Keiler M. (2019). Modeling the impact of dam removal on channel evolution and sediment delivery in a multiple dam setting, International Journal of Sediment Research, S1001-6279(18)30344-5. https://doi.org/10.1016/j.ijsrc.2019.06.001
Schumann, G. P., Neal, J. C., Voisin, N., Andreadis, K. M., Pappenberger, F., Phanthuwongpakdee, N., . . . Bates, P. D. (2013). A first large‐scale flood inundation forecasting model. Water Resources Research, 49(10), 6248-6257.
Schumm, S. A., Mosley, M. P., & Weaver, W. (1987). Experimental fluvial geomorphology.
Schumm, S. A., & Parker, R. S. (1973). Implications of complex response of drainage systems for Quaternary alluvial stratigraphy. Nature Physical Science, 243(128), 99.
Skinner, C. J., Coulthard, T. J., Parsons, D. R., Ramirez, J. A., Mullen, L., & Manson, S. (2015). Simulating tidal and storm surge hydraulics with a simple 2D inertia based model, in the Humber Estuary, UK. Estuarine, Coastal and Shelf Science, 155, 126-136.
Sólyom PB, Tucker GE. (2004). Effect of limited storm duration on landscape evolution, drainage basin geometry, and hydrograph shapes. Journal of Geophysical Research, 109: F03012. DOI: 10.1029/2003JF000032
Smith TR, Bretherton FP. (1972). Stability and the conservation of mass indrainage basin evolution. Water Resources Research, 8: 1506 – 1529. DOI: 10.1029/WR008i006p01506
Smith TR, Birnir B, Merchant GE. (1997a). Towards an elementary theory of drainage basin evolution. I. The theoretical basis. Computers and Geosciences, 23: 811 – 822. DOI: 10.1016/S0098-3004(97)00068-X
Smith TR, Merchant GE, Birnir B. (1997b). Towards an elementary theory of drainage basin evolution. II. A computational evaluation. Computers and Geosciences, 23: 823 – 849. DOI: 10.1016/S0098-3004(97)00067-8.
Slingerland, N, Beier, NA & Wilson, GW.( 2019). 'Stress testing geomorphic and traditional tailings dam designs for closure using a landscape evolution model', in AB Fourie & M Tibbett (eds), Proceedings of the 13th International Conference on Mine Closure, Australian Centre for Geomechanics, Perth, pp. 1533-154. https://doi.org/10.36487/ACG_rep/1915_120_Slingerland
Sosa, J., Sampson, C., Smith, A., Neal, J., & Bates, P. (2020). A toolbox to quickly prepare flood inundation models for LISFLOOD-FP simulations. Environmental Modelling & Software, 123, 104561.
Temme, A., Baartman, J., & Schoorl, J. (2009). Can uncertain landscape evolution models discriminate between landscape responses to stable and changing future climate? A millennial-scale test. Global and Planetary Change, 69(1-2), 48-58.
Temme, A., & Veldkamp, A. (2009). Multi‐process Late Quaternary landscape evolution modelling reveals lags in climate response over small spatial scales. Earth Surface Processes and Landforms, 34(4), 573-589. doi:doi:10.1002/esp.1758.
Tucker, G. E. (2004). Drainage basin sensitivity to tectonic and climatic forcing: implications of a stochastic model for the role of entrainment and erosion thresholds. Earth Surface Processes and Landforms, 29(2), 185-205. doi:doi:10.1002/esp.1020.
Tucker, G. E., & Slingerland, R. L. (1994). Erosional dynamics, flexural isostasy, and long‐lived escarpments: A numerical modeling study. Journal of Geophysical Research, Solid Earth, 99(B6), 12229-12243.
Tucker GE, Hancock GR. (2010). Modelling landscape evolution. Earth Surface Processes and Landforms, 35: 28 – 50. DOI: 10.1002/esp.1952.
Tucker GE, Bras RL. (2000). A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Water Resources Research, 36 (7): 1953 – 1964. DOI: 10.1029/2000WR900065
Van De Wiel, M. J., Coulthard, T. J., Macklin, M. G., & Lewin, J. (2007). Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model. Geomorphology, 90(3), 283-301. doi:https://doi.org/10.1016.j.geomorph.2006.10.024.
Van De Wiel, M. J., Coulthard, T. J., Macklin, M. G., & Lewin, J. (2011). Modelling the response of river systems to environmental change: Progress, problems and prospects for palaeo-environmental reconstructions. Earth Science Reviews, 104(1), 167-185. doi:https://doi.org/10.1016/j.earscirev.2010.10.004.
Valters, D. A. (2016). 5.6. 12 Modelling Geomorphic Systems: Landscape Evolution.1-20.
Wilcock PR, Crowe JC. (2003). Surface-based transport model for mixed size sediment. Journal of Hydraulic Engineering, 129: 120 – 128. DOI: 10.1061/(ASCE)0733-9429(2003)129:2(120)
Willgoose G, Bras RL, Rodriguez-Iturbe I. 1991. A coupled channel network growth and hillslope evolution Model 1. Theory. Water Resources Research, 27: 1671 – 1684. DOI: 10.1029/91WR00935
Willgoose, G., Bras, R. L., & Rodriguez-Iturbe, I. (1994). Hydrogeomorphology modelling with a physically based river basin evolution model. Process models and theoretical. geomorphology, 271-294.
Yu, W., Kima, Y., Leeb, D., Lee, G. (2018).  Hydrological assessment of basin development scenarios: Impacts on the Tonle Sap Lake in Cambodia. j.quaint.2018.09.023
Zhao, G., Bates, P., & Neal, J. (2020). The impact of dams on design floods in the Conterminous US. Water Resources Research, 56(3), e2019WR025380.